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Abstract 

The c lass ica l  binary encounter model for ionization by charged 

pa r t i c l e  impact is  modified t o  permit evaluation of t h e  cross section 

fo r  ionization of positive ions by electron impact. General scalable 

expressions are obtained and compared w i t h  available experimental 

data and quantum theoret ical  approximations. 

charge i s  discussed, and a simple physical interpretat ion emerges. 

O u r  results indicate that  t h i s  model i s  as reliable as the Born 

approximation for t h i s  process; 

experiment for  energies much la rger  than threshold and are every- 

where within a factor of two. 

The dependence on ionic 

i . e . ,  they agree very w e l l  w i t h  
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r . I~WRODUCTION 

c 

The lack of solutions t o  the  three-body problem presents a d i s t inc t ly  

larger handicap i n  considering the ionization of ions by charged pa r t i c l e  

impact than i n  ionization of neutrals, because of the effects  of the  residual 

i o n i c  field. 

f c l ~ n d  t o  provide a reasonable description of the  phenomena; i n  fac t ,  the  

crsriai first Born approximation could be considered t o  be of t h i s  type be- 

CELSE: only the incident particle-atomic electron interaction contributes. 

i: . rthemore, recent work1-" has indicated the  u t i l i t y  of even a c lass ica l  

binary enccwnter approximatfan f o r  charged pa r t i c l e  ionization of neutrals.  

For the neutrals,  the binary encounter approximation has been 

For ionization, the primary motivation f o r  t h e  use of a c l a s s i ca l  binary 

efiznwter model is t h a t  it provides a simple framework for  estimates, which 

-"it. t o  be quite re l iab le  at high e n e r 9  and within a factor  of about 

I n  addition, t h e  model has been shown' t o  be related t o  1-4 2 h:~rerywhere. 

:.tun treatment, Its practical, significance i s  greatest  f o r  multi-elec- 

t :-'xi -r,S;c'ms (and diatomic molecules), where even the  Born approximation be- 

We have thus deemed it appropriate t o  provide a modifica- ?='; rnwfeh3y. 

cf trre model t o  make it applicable t o  the  reactions 

4 A(n+l )+ + e + e  

T y r  Section 11 we evaluate the effects  of t he  residual. ion f i e l d  on the 

:rt.'f3 5ec',jon within. the binary encounter framework. Section I11 contains 

Y wmoearfson of our reslllts with the available experimental data and with 
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quantum treatments extant. 

fo r  reaction (2) a re  straight-forward. Our resu l t s  agree very well with ex- 

periment fo r  energies much larger than threshold and are  everywhere within a 

factor  of 2. 

though not as accurate as close-coupling resul ts .  

vides some interpretat ional  advantages. 

We discuss only reaction (1) ; the changes required 

They are  as re l iab le  as the  simple Coulomb-Born approximation 

Our formla t ion  also pro- 

11;. MG;DEL FOR I O N  IONIZATION 

%he binary encounter approximation consists of the assumption tha t  the 

s ignif icant  interact ion is the energy exchange between the  incident charged 

pw%icle ,  of velocity vl, and an atomic electron of velocity Va. 

zross section f o r  ionization of a neutral  atom is  

4 4 

Thus the 

.I. 

'i 

eff- 
AE W.?CTS 3 is the  cross section for exchange of energy AE, i n  the laboratory 

t ' r a ~ ~ ~ ,  averhged over a l l  orientations of vai, and n. i s  the number of equi- 

36,Lmt electrsns  whose energy i s  U The resu l t  (3) is  t o  be  averaged over 

~ ~ 1 0  s-,eed dist r ibut ions of the bound electrons. 

1 

i' 

IG tYis section we present a madel fo r  calculating the cross sections 

EOP r.?action (l), taking in to  account the effects  of the residual f i e l d  of 

,c.e A T , ~ ~ L  &?its u e  csed. t.hroughout. 

3ur model can be simply stated as follows: we consider an electron 

r i c h  2.9mtic energy El incident on a fixed posit ive ion with net charge Z ' .  

At B dis tmce  5 from the nucleus, the  incident electron undergoes an essen- 

t i a l l y  binary col l is ion with a bound electron, of binding energy U, resul t ing 
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In  an energy t ransfer  AE 2 U. 

a k ine t ic  energy 

A t  t he  distance g, the incoming electron has 

SG t h a t  t he  t o t a l  cross section for  t he  energy exchange co l l i s ion  is  given 

by 

U 

where ( )ave denotes an averaging over t he  speed d is t r ibu t ion  f(vo) of t he  

bound electron. I n  Eq. ( 5 ) ,  t h e  upper l i m i t  of t he  in tegra l  must be E l ,  

not E l t ,  since f o r  ionization, both electrons are t o  be i n  posi t ive energy 

s t a t e s  after co l l i s ion .  The t o t a l  cross section f o r  ionization w i l l  be re-  

l a ted  t o  a '  as indicated i n  F i g .  1. We assume that Q '  determines an average 

cff-axis distance p from the  re la t ion  u t  = mp2. The parameters f and p then 

detwmine a t r a j ec to ry  f o r  the  incident electron i n  the  presence of t he  

ss$mptotie charge 2' pr io r  t o  the binary encounter. This t ra jec tory  i n  turn 

s,pecifies t he  i n i t i a l  impact parameter b f o r  the  incident electron. 

tota; cross sect ion f o r  ionization i s  then a = m2. 
The 

Our f i n a l  r e su l t  i s  

Fresented i n  the  form of a correction fac tor  t o  an appropriate r e su l t  f o r  

neutrals .  

'Tne co l l i s ion  radius 5 depends on bot$  the d i s t a c e  of the bni_r_n_d 
d 4 

rlectrcsn from t h e  nucleus r 

ai energy exchange AE 2 U can occur. 

t 9 ons , 

and an electron-electron separation 6 such t h a t  A 
We use an average over r e l a t ive  orienta- 
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Classically,  an average r can be determined from t h e  virial theorem resu l t  

'' + 

We adopt this  r e su l t  f o r  a l l  cases. 

A 

= U, where U i s  the  binding energy, a t  least f o r  hydrogenic ions. 
2rA 

6 is  related only t o  an energy exchange col l is ion between the two 

electrons. 

which one electron i s  i n i t i a l l y  a t  r e s t  and the  other i s  incident with 

energy Eld. 

em, such that a minimum energy t ransfer  AE = U m a y  occur i s  given by' 

Consider the simpler case of an isolated two-electron system i n  

For t h i s  s i tua t ion ,  the minimum laboratory scat ter ing angle 

sina 0 = u / E ~ ~  , m 

corresponding t o  a maximum (center of mass) impact parameter, 

(7) 

where @ 

of mass orb i t  equation,' together with (7) and (8); w e  f ind  that the largest  

distance of closest  approach, d, such that an energy t ransfer  of at  least U 

can occur is 

= 2em is  the center of mass scat ter ing angle. Using the center m 
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T h i s  resu l t  was derived f o r  one electron i n i t i a l l y  at rest; i f  both elec- 

trons have non-zero laboratory frame ve loc i t ies ,Eld  is the re la t ive  kine- 

t i c  energy. But i f  we average over a spherically symmetric dis t r ibut ion 

of veloci t ies  fo r  one electron, the resul tant  re la t ive  energy is  the t o t a l  

laboratory frame energy. 

the value of 6 : 

Thus we set Eld = El- U in ( 9 )  and adopt t h i s  as 

: ,qutions (lo), ( 6 ) ,  and (4) complete our specification of El' : 

, g i '  L, r = -7- " + &xi 6 8s defined i n  (lo). A 2U 

We now need t o  find the impact parameter b ,  such that the incident 

electron intercepts the  "collision sphere': at an angle 

s i n  9 = p i $ ,  where p -i (c l /n)" , &s shown i n  Fig. 1.7 Considering the ion 

as fixed, the t ra jec tory  of the electron is given by6. 

iefined by 

cos 8 '  = [1 + 
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Using r = 5 and 8 = sin-' p/S , together with the requirement tha t  i f  

2'  = 0, b = p ( i .e . ,  no correction f o r  the  neut ra l  case),  we can solve (11) 

f o r  b: 

The t o t a l  ionizat ion cross section, remembering the  def ini t ion of p, i s  then 

(El) E rrb" = a 0' (1 + [I + - 
9.0I.I 

o r  f i na l ly ,  using (4) t o  eliminate 5 and taking advantage of the  fact2 tha t  

CT' (hence a) is  a scalable function of El/U , 

where C = $0, c' = 30' Bl = El/U , and 

3 Z q z '  + 1) 

(Zl + 1)" + Aa 

3 2 '  A 
/ Z '  4- 1\2 

2 )  
3" t ( 

1 B l +  

t 

2' + l  > A  
2 

Z ' + 1  < A  
2 

A= ~6 = [(el- 1)V"  i. 13 . 



8 

Equation (E!) i s  the  desired 

electron of binding energy U 

resul t  for  the  cross section fo r  removal of an 

f romthe  ion whose residual charge i s  2'. The 

t o t a l  cross section fo r  ionization of an ion i s  obtained by summing over a l l  

electrons i n  the  ion. We need s t i l l  spec iw the  function defined by Eq,  ( 7 ) .  

A f e w  remarks abczut the  nature of our result  we i n  order. The fac tor  

~n curly brackets i n  (12) represents the e f fec t  of magnification of the  

cross section due  t o  t he  curvature of t h e  electron's path i n  t h e  residual 

f i e l d .  The magnification i s  1 when Z '  = 0, as appropriate. The other di f -  

ference from the  model fo r  ionization of neutra.is is i n  requiring an in- 

crease i n  %he incidenz pa r t i c l e  enerrv a t  which %he energy exchange takes 

';.%ace, ref lected i n  SI_ I .  Thus, t ,he  resu l t  incorporates the  major features 

of t he  effect of the  ion f i e l d .  Both of these e f fec ts  are expected t o  be 

very small for  reaction (2) 'because of the  large mass differences. 

We now return t o  the  evalu&tbtlon of c' or  0' from Eq. (5).  

(VI ' 

The required 

eft 
AE expressfcns for  CJ 

It alreaqv involves 3 spheric31 &vemging over a l l  orientations of va with 

respect TO v1 1 ,  We evaluate the in tegra l  over (ARE) bv imposing t h e  condi- 

vs) have been given by G e r j u ~ y , ~  among others. 
-# 

4 

t i o n  II S El 5 EL md taking E? fixed but arbitrary. We have, then, the 

three following poss ib i l i t i es*  (When El # El  ' ) : 
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where 

and 

. l a  w i t h  - v2 , etc .  Equation (14a) does not appear i f  El = El  '. I n  

that case, Eqs, (14) reduce to  Stabler's* resu l t  (with the appropriate 

changes i n  notation), as expected. 

tions into Eqs.  (14) and introducing the scaled quantit ies of E q s .  (12) 

and (13), we have 

- 2  

Inserting the  resu l t s  of the  integra- 

where we have expressed t h e  ineqcallties i n  (1h) 8s inequal i t ies  on 82 = 2'z/U. 

For ioniz&tion PI 2 1. 

Equation (15) is required to cabcuiate c'(@1 '; P I ) .  If we adopt hydro- 

genic speed dis t r ibut ions for the bound electrons 



we have 

The integral  (17) using (15) and (16) results in the f d l c w i n g  ex- 

i;rc*SS ion : 

where c = p a 1  + 1. 
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We note tha t  by se t t ing  P I '  IP: w e  can obtain the averaged ionization 

cross section for neutral  hydrogen in  the  binary encounter model from (18) : 

"H 

9 The numerical calculations of Kingstor, 

obtained from the  exact expression (18) with PI * II Ba . 
%hat t h i s  exact resu l t  i s  proportional t o  l / S l  as Ea + a  . 

s re  i n  agreement with the  resu l t s  

It should be noted 

111. MSUL;IS AND COMPARISONS 

Since both (E) and (18) a r e  already i n  scaled form, the  application 

of these results t o  t h e  icnization of any ion merely requires a sum of 

expressions (E) f o r  each bound electron: 

where n. i s  the  number of equivalent electrons having binding energy Uiy 
1 

8 = El /Ui and B ' is  given by (13). 
li a i  

One t e s t  of our model i s  provided by a comparison with exis t ing quantum 
+ treatments fo r  He . Figure 2 show6 such a comparison with the  first Coulomb- 

Born (CB(i)) approximation of Burgess and Rudge," and with the second 

Coulomb-Born ( C B ( i i ) )  calculations of Ruse and Schwartz." The f igure 

shcwrs nnly t h e  values expl ic i t ly  calculated, not including t h e i r  extrapola- 

t i o n  LO higher energies. 

-- e t  al.b2 

SchwartzLL l i e  very close t o  the  experimental values, while the close 

coupling approximation values of Burke and TaylorL3 l i e  close t o  the C B ( i i )  

Also shown are t h e  experimental values of Dolder 

The Coulomb-Born-exchange (CBe) calculations of Rudge and 



curve; neither of these i s  shown. It can be seen that  our model gives r e su l t s  

c 

consistent with the simpler C B ( i )  approximation, but not as close t o  the ex- 

per9 mental values as t h e  more elaborate CB( ii) and CBe approximations. 

point out t ha t  a l l  of these CB approximations require extensive numerical 

We 

integration, especially at higher energies. 

It should be apparent tha t  while the magnification factor i n  Eq. (E?) 

was obtained i n  a rather  direct  fashion and i s  re la t ive ly  insensit ive t o  the  

parameters used i n  the model, the interaction energy El' is  considerably 

mure model dependent. Since the model only attempts plausible approximations 

t o  the exact three-body effects ,  we have examined various schemes for  vary- 

ing 
+ '. The so l id  curve i n  Fig. 3 i s  our "best" resu l t  f o r  He  , obtained 

by  using i 3 ~  ' = 2 i n  (18) and using t h i s  value of C '  in (12). The explicit 

' dependence of ( 2 )  i s  s t i l l  determined by (13). The dashed curve i n  

t h i s  f igure i s  a semi-empirical cross-section, discussed below. We note 

t h a t  t h i s  r e su l t  Lies everywhere below the  C B ( i i )  curve of Fig. 2, except 

i n  the region from threshold t o  100 ell, We denote the resu l t  obtained by 

usjng B p  'Table I gives the  values of C' 

range of values of 81 of any pract ical  significance. 

= PI+ 2 in (18) by XIN.  fo r  the N 

It i s  apparent t ha t  t h i s  choice of the energy dependence of C' improves 

agreement with experiment near threshold, and goes smoothly t o  the unmodified 

ses?llt a t  higher energies. 

of the residual f i e l d  become less  important.) 

simulates i n  some fashion exchange effects .  

(As the incident energy i s  increased, the e f fec ts  

N The effect  of using C' 

On t h i s  basis,  w e  suggest t ha t  

t h e  t o t a l  cross section for ionization of ions can be well approximated by 

(19) with the use of CtN i n  (E). 
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The dependence on residual charge Z '  i s  i l l u s t r a t ed  i n  Fig. 4. There 

the reduced cross-section QR = (U:)-' C, where U i s  the ionization energy 

of hydrogen, i s  plot ted for  various values of Z ' .  (SIN has been used.) It 

can be  seen that  a t  high energies c becomes independent of Z '  , a resu l t  

which can a l so  be obtained direct ly  from (la) and (13) 

Fig. 4 i s  the "unmagnif'ied!! resul t ;  that f a ,  it is j u s t  the reduced cross- 

section CtN/UH . 
t ion  discussed below. 

H 

The dashed curve i n  

a The broken curve i s  the semi-empirical reduced cross-sec- 

The usefulness of 8 classical  formulation is  made evident here. Quantum 

obtain the same general features displayed i n  Fig. 4, but 10 ,I1 treatments 

their  interpretat ion i s  not evident. 

of t he  reduced cross-section is  pr imari ly  due t o  the curvature of the electron 

i n  the  residual f i e l d  of t he  ion. 

produced by the residual  f i e l d  increases, but the  mean distance of the bound 

electron from the nucleus decreases. These two ef fec ts  eventually compensate 

each other, so tha t  the  reduced cross-section approaches a l imiting curve as 

Z '  + QI. The cross-section i t s e l f ,  of course, has additional 2'-dependence 

i n  tha t  it is proportional t o  l/$ 

From (12) we see tha t  the Z'-dependence 

A s  Z '  increases, the actual  curvature 

Further comparisons wi%h experiment a re  presented i n  Figs .  5 and 6. 

The experimental r e su l t s  are  from Refs. 14 through 17. 

upper so l id  curve i s  the direct  evaluation of (19) with 

and the lower curve the  r e su l t  o f  using Z t N  i n  (12) , then using (13) i n  (12) 

t o  determine (19). 

to  be Glementi's Hartree-Fock values. 

fying, considering the simplicity of the model, especially f o r  the calcula- 

t i ons  involving CtN.  

everywhere within a fac tor  of about 2, and much be t te r  at  high energies. 

In  each case, the 

' as given by (13) , 

The required inner s h e l l  ionization energies were taken 

18 Agreement with experiment is  gra t i -  

Even the  direct  model resu l t s ,  however, are seen t o  be 



Finally,  w e  observe tha t  an a l te rna t ive  choice for  the electron-electron 

interact ion cross-section, X I ,  can be based upon experiment. The dashed curve 

i n  Fig. 3 is  the r e su l t  of using EtH e (e,) for  E' i n  (E), where C' 
9 x P  H,exp (e, 1 

has been obtained from the fit t o  the  experimental electron-hydrogen ioniza- 

t i o n  cross-sections given i n  Ref, 11. 

is QE(~,exp(B1)) .  Agreement with experiment is  s l igh t ly  improved at  high 

S imi l a r ly ,  t he  broken curve i n  Fig. 4 

energies, as expected from the  resu l t s  fo r  ionization of neutrals.' 

We conclude that the  binary encounter model, as modified, i s  as r e l i ab le  

for predicting ionization of ions as f o r  neutrals.  Evidently, energy exchange 

between the  incident and bound electrons i s  t h e  dominant interact ion occurring 

i n  th i s  process. 
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Table I. 
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0. I274 

0.0729 

0,0508 



16 

c 

1, E. Bauer and C.  D .  Bartky, J. Chem. Phys. 43, 2466 (1965). 

J. D. Garcia, E. Gerjuoy, and J. E ,  Weaker, Phys. Rev. 165, 66 (1968). 2 .  

3. J. D. Gapcia, J. Chem. Phys. 47, 3679 (1967). 

4. E. Gerjuoy, Phys. Rev, 148, 54 (1966). 

5.  J .  D. Carci8, Phys.  Rev. 159, 39 (i967). 

P 

-- 
- 

I- 

- 
6 .  

7. 

a. 
9. 

10. 

11 * 

12, 

13.  

14. 

15. 

16. 

17 

18. 

See, for  example, H ,  Caldstein, Classical "----. _. --....- Mechanics, Addison-Wesley, Inc., 

Cambridge, Mass., 1950, Chapter 3. 

The r a t i o  p/S is strictly less than unity, i f  2'  2 1. From Eq. ( 6 )  we 

see t h a t  5 2 rA, so tha t  US 2 UrA = - , Thus p / s  5 %  = 

2- (?ofion/n)YP . T h i s  last fac tor  can be shown t o  be less than 1 Z'Cl 
from the equations i n  Ref. 4. 

urA 2 

R. C. Stabler,  Phys. Rev. - 133, A U %  (1964). 

A. E. Kingston, Phys. Rev. - 135, ~ 6 3 7  (1964). 

A, Burgess and M. R. H. Rudge, Proc. Roy. So@. (London) A273, __j 372 (1963) e 

M. R. H ,  Ruee  and S .  €3. Schwartz, Proc, Phys .  ~ O C ,  (London) 88, - 563 (19663. 

K, T .  Dckder, M. F. A .  Harrison, and P, C ,  Thonemm, Froc. Roy. Sac. 

(London) u 6 4 ,  - 367 (lg61). 

P. G. Burke and A ,  J. Taylor, Proc, Roy. SOC. (London) &87, __1 105 (1965). 

M. F. A. Harrison, K. T. Doldes, and P. C, Thonemm, Eroc. Eoy. Soc. 

(London) A274, 7 546 (1963). 

M. F. A. Harrison, K. T .  Dolder, and P. 6 .  Thonemm, Proc. Phys. SOC. 

(Lonrlon) - 82, 368 (1963). 

W ,  C ,  Lineberger, J. W .  Hooper, and E. W ,  McDmiel, Phys .  Rev. _uL 141, 151 (1966). 

J. W .  Hooper, W. C. Lineberger, and F. M. Bacon, Phys. Rev. - 141, 165 (X966), 

E. Clementi ,  IBM J. of Res. & Pev. - 9 ,  2 (1%5), with suppl. tables.  



4 

. 17 

FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5 .  

Fig. 6. 

Geometry for  electron-ion coll ision. 

Ionization of helium ions by electron impact. Solid curve, present 

results ; broken curves, Coulomb-Born approximations (Ref. 10 and 11) ; 

c i rc les ,  experimental results (Ref. 12) .  

Comparison of modified binary encounter results. Solid curve, 

c i rc les ,  H, exp' result using Z t N ;  dashed curve, resu l t  using C' 

experiment (Ref. 12). 

Z'-dependence of reduced cross sections. Solid curves, reduced 

cross sections for  various Z ' ;  dashed curve, "unmagnified" reduced 

cro8s section, Z1N/l&2 ; broken curve; reduced semi-empirical cross 

section, H, exp /u H 2 .  

Electron impact ionization cross sections. In each case, the upper 

so l id  curve i s  the direct model result, the lower curve is the 

values using I t N .  (a) Neon ions; c i rc les ,  experimental results 

(Ref. 1 4 ) .  

(Ref. 15 ) .  

Electron impact ionization of a l k a l i  ions. 

(b) N i t r o g e n  ions; c i r c l e s ,  experimental results 

In  each case the  upper 

s o l i d  curve i s  the d i r e c t  model result, the  lower curve is the 

values using Z q N .  (a) L i t h i m  ions; c i rc les ,  experiment (Ref. 

16).  (b) Sodium ions; c i rc les ,  experiment (Ref. 16). ( c )  Potassium 

ions ; c i r c l e s ,  experiment (Ref. 17). 
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